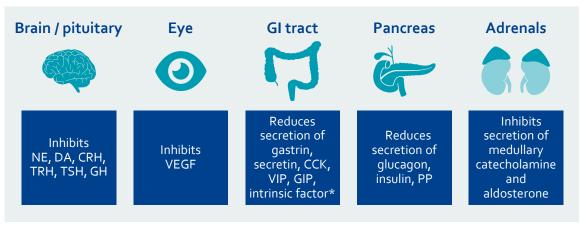
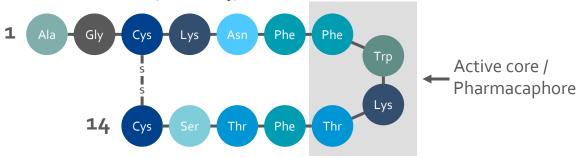


The rationale behind targeting somatostatin receptors in the treatment of neuroendocrine tumors

Created by <u>theranostics.online</u>, a disease education website for healthcare professionals in nuclear medicine and oncology.

August 2023

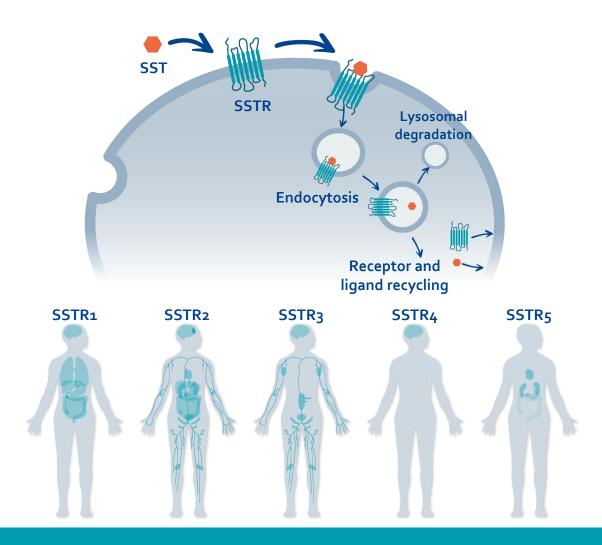



Somatostatin signaling player 1: the ligand

- Somatostatin (SST), also known as somatotropin release-inhibiting factor (SRIF) or growth hormone-inhibiting hormone (GHIH)¹
- Small cyclic peptide hormone with very short halflife in the body (1-3 min)²
- Broadly distributed in the CNS, hypothalamus, the pancreas and GI tract³
- Inhibits numerous metabolic processes related to cell proliferation and endocrine as well as exocrine secretion of hormones
- Two biologically active forms of 14 (SST-14) and 28 (SST-28) amino acids⁴
- Mediates its function by binding to specific somatostatin receptors (SSTRs)

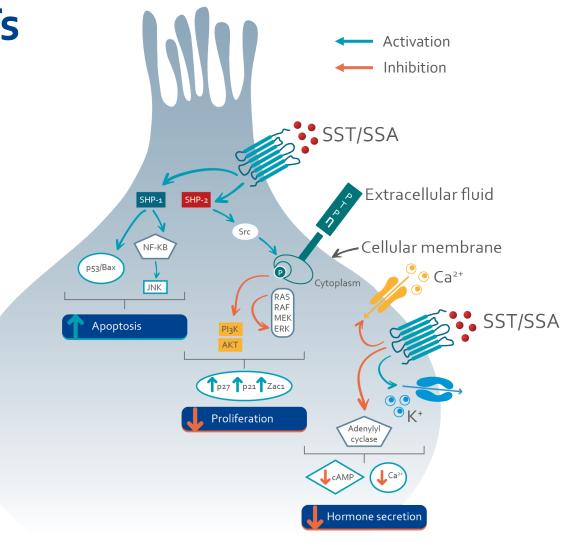
Somatostatin function

Somatostatin (SST-14) structure



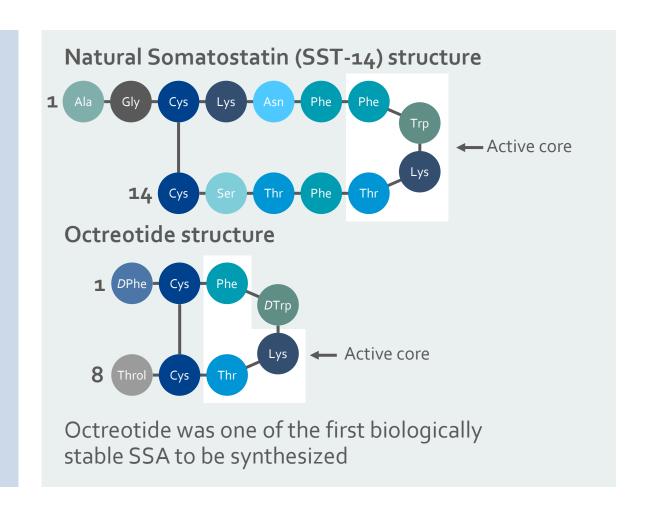
Somatostatin signaling player 2: the receptor

- Somatostatin receptors (SSTRs) are plasmamembrane receptors with high affinity to SST¹
- Five subtypes (SSTR 1-5), two isoforms of SSTR2, SSTR2A and SSTR2B, produced by alternative splicing
- Belong to GPCRs superfamily with a size range of 356-391 amino acids; sequence divergence in the Nand C-terminal segments of subtypes
- SST binding to SSTR leads to SSTR phosphorylation followed by downstream activation of multiple signaling pathways; simultaneously, the SST-bound SSTR is internalized by clathrin-coated vesicles and thus engulfed by endocytosis²
- After endocytosis, the SSTR either undergoes ubiquitin-dependent lysosomal degradation or is recycled to the plasma membrane
- SSTR subtypes are widely expressed in various tissues throughout the body, especially in CNS, pancreas and gut²



Upregulation of SSTRs in NETs

- Neuroendocrine tumors (NETs) are a subgroup of neuroendocrine neoplasms. They are welldifferentiated tumors that originate from neuroendocrine cells¹
- NETs are widely distributed in the body but occur most commonly in the GI tract, pancreas and lungs
- A majority of NETs (~80%) overexpress SSTRs on their cell membrane, namely SSTR types 1 and 2
- Key signaling pathways such as MAPK and PI₃K and enzymes including PTPs and adenylyl cyclase are modulated upon SSTR activation²
- Targeting SSTR signaling in NETs at a functional level inhibits hormonal secretion, cell cycle progression, angiogenesis, and cell migration³
- This makes targeting the SSTR a valuable tool for diagnosing, staging, and treating NET patients⁴



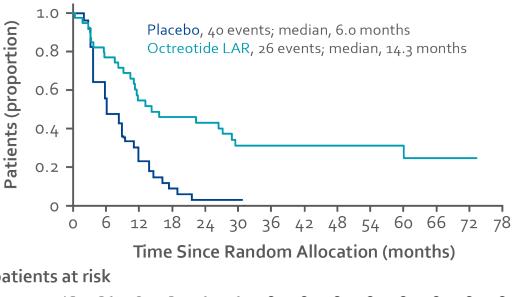
Somatostatin analogs (SSAs)

- Due to the limiting factor of a short half-life of natural SST in the body (1-3 mins), SSAs with a longer half-life (between 1.5-12 h) have been developed¹
- SSAs are hexa- or octa-peptide molecules consisting of the active core (Phe⁷, Trp⁸, Lys⁹ and Thr¹⁰) of natural SST in the form of a ß-sheet
 - Trp⁸ and Lys⁹ are essential for the activity
 - Phe⁷ and Thr¹⁰ may undergo some substitutions
- There are two main categories of SSAs:
 - Agonists: Molecules that activate the SSTR
 - Antagonists: Molecules that block or reduce the physiological effect of the SSTR
- SSAs have unique affinities for different SSTR subtypes

Overview of SSAs in NET treatment

- While surgery remains the first-line treatment strategy for NETs, SSAs offer palliative care for patients with advanced stages of the disease
- SSAs were initially used in the symptomatic management of NET to inhibit the release of neuropeptides and bioactive amines; recent research demonstrates that SSAs exert antiproliferative effects and inhibit tumor growth via the SSTR21
- While the natural SST binds to all SSTR subtypes with high affinity, though not the same, SSAs only bind with high affinity to specific SSTR subtypes. For example, octreotide has a high affinity to SSTR2 and SSTR5, and a moderate affinity to SSTR3^{2,3}
- Several trials demonstrated high rates of disease stabilization upon SSA treatment suggesting benefits in both progression-free and overall survival in NETs

SSTR subtype-binding affinity of SSAs

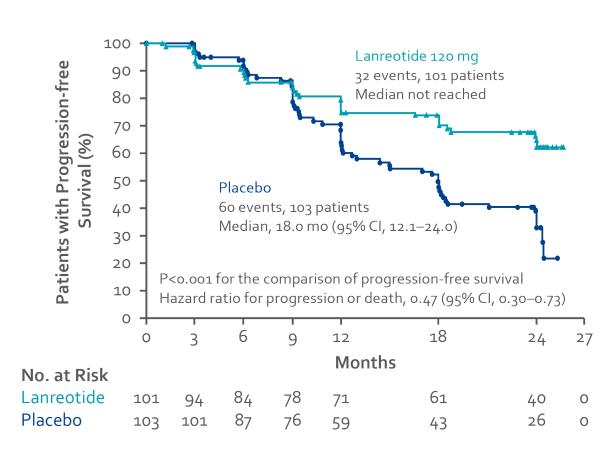

Receptor subtype affinity [IC50, nM]						
Compound	SSTR1	SSTR ₂	SSTR ₃	SSTR4	SSTR ₅	
SST-14	2.26	0.23	1.43	1.77	0.88	
SST-28	1.86	0.31	1.3	ND	0.4	
Octreotide	1140	0.56	34	7030	7	
Lanreotide	2330	0.75	107	2100	5.2	
Pasireotide	9.3	1	1.5	>100	0.16	

Octreotide: PROMID

- Octreotide is the first synthetic SSA octapeptide¹:
 - Short-acting: subcutaneous administration, once or twice daily
 - Long-acting repeatable (LAR): intramuscular administration, once a month
- PROMID: Phase III prospective randomized trial in treatment naïve patients with metastatic midgut NETs
- N=85
 - 42 treated with Octreotide LAR (30 mg every 4 weeks)
 - 43 treated with placebo
- Median time to tumor progression (primary endpoint) in Octreotide LAR arm: 14.3 months vs 6.0 months with placebo (P=0.000072)²
- Similar responses in functionally active and inactive tumors
- Post-treatment follow-up could not reproduce the positive results of the tumor progression in the increase in OS³
- Currently approved for symptom control and tumor growth control in advanced intestinal NET^{4,5}

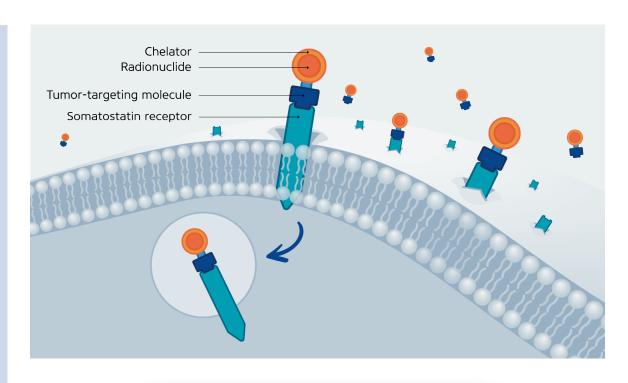
No. of patients at risk

Placebo Octreotide LAR 42 30 19 16 15 10 10


Log-rank test stratified by functional activity: P = .000072, HR = 0.34 (95% CI, 0.20 to 0.59)

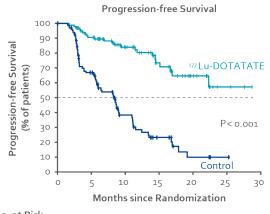
Lanreotide: CLARINET / CLARINET OLE

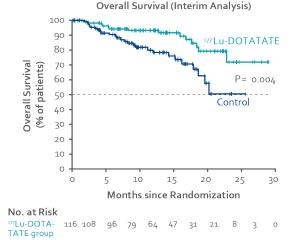
- Lanreotide was developed subsequent to octreotide:
 - Sustained-release formulation for deep subcutaneous administration (autogel)
- CLARINET¹: Phase III prospective randomized trial in patients with metastatic intestinal NETs of grade 1 or 2 (Ki-67 <10%)
- N=204
 - 101 treated with Lanreotide autogel (120 mg, q4w)
 - 103 treated with placebo
- Lanreotide was associated with significantly prolonged PFS (median NR vs. 18.0 months for placebo, P<0.001)
- Most common TRAE was diarrhea (26% in Lanreotide vs 9% in placebo)
- CLARINET OLE²:
 - Evaluated long-term safety in 42 patients who continued lanreotide and 47 patients who started lanreotide after receiving a placebo during the CLARINET core study
 - Provided new evidence on the long-term safety profile and sustained anti-tumor effects of Lanreotide
- Lanreotide is considered equally effective to octreotide in symptom control and preferred over octreotide in panNETs³



Peptide receptor radionuclide therapy (PRRT)

- PRRT is a form of systemic therapy administered by IV injection of radiopharmaceuticals that allows targeted radiation delivery to tumor cells via direct binding to specific receptors such as SSTR
- Radiopharmaceuticals for therapy differ from their imaging counterpart by the nature of radioisotopes¹
- Three types of emitters are commonly used: β^- particles (electrons), α particles, and Auger electrons, with a strong focus on β^- emitters (e.g., 177 Lu and 90 Y) 2
- The antitumor activity of PRRT relies on the ability of radiopharmaceuticals to bind to SSTRs expressed on the cell membrane of GEP-NETs, which results in their internalization and subsequent delivery of the radioactivity directly into the intracellular space of the tumor cell³
- The retention of intracellular ionizing radiation is associated with DNA damage as well as with apoptosis due to the inability of the cell to correct the damage

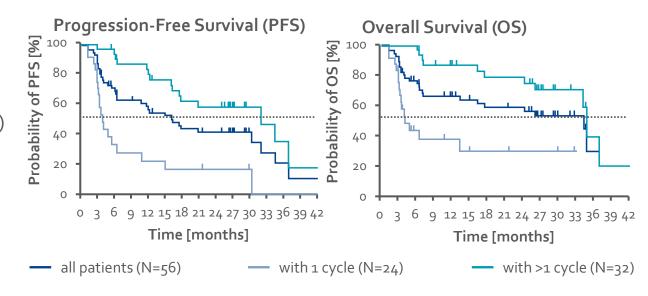




¹⁷⁷Lu-DOTATATE: NETTER-1

- First prospective, randomized, controlled Phase III trial evaluating the efficacy and safety of ¹⁷⁷Lu-DOTATATE in patients with well-differentiated metastatic midgut NETs
- N=229
 - 116 treated with four cycles of ¹⁷⁷Lu-DOTATATE (7.4 GBq q8w) plus octreotide LAR (30 mg q8w), followed by octreotide LAR (30 mg q4w)
 - 113 treated with high-dose octreotide LAR (60 mg q4w)
- Treatment with ¹⁷⁷Lu-DOTATATE resulted in markedly longer PFS versus the control group and a significantly higher response rate (18% vs. 3%)¹
- OS benefit as a secondary endpoint was seen in an interim analysis but was not met during long-term follow-up²
- Clinically significant myelosuppression occurred in less than 10% of patients in the ¹⁷⁷Lu-DOTATATE group
- These results led to the marketing authorization of ¹⁷⁷Lu-DOTATATE as a treatment option for patients with SSTR-positive, metastatic and progressive midgut NETs^{3,4}

Objective Tumor Response


Response Category	¹⁷⁷ Lu-DOTATATE Group (N=101)*	Control Group (N=100)*	P Value†
Complete response - no. (%)	1 (1)	0	
Partial response - no. (%)	17 (17)	3 (3)	
Objective response			
No. with response	18	3	
Rate % (95% CI)	18 (10-25)	3 (0-6)	<0.001

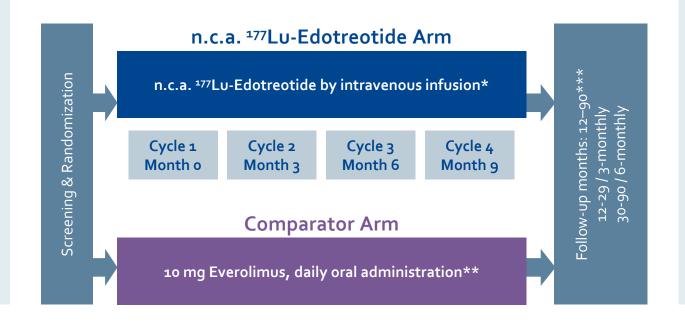
¹⁷⁷Lu-Edotreotide: Phase II retrospective study

- Study evaluated the efficacy and safety of ¹⁷⁷Luedotreotide in patients with advanced NETs
- N=56
 - 24 treated with 1 cycle of ¹⁷⁷Lu-edotreotide (7.0 GBq)
 - 32 treated with more than 1 cycle of ¹⁷⁷Luedotreotide (7.0 GBq q3m)
- Median PFS and OS were 17.4 and 34.2 months, respectively
 - Median PFS was better for patients receiving more than 1 cycle (32.0 vs. 3.8 months)
- There were no serious adverse events, as well as no evidence of exacerbated or *de novo* renal toxicity
- These promising results warranted a prospective Phase III trial of ¹⁷⁷Lu-edotreotide in patients with NETs

Tumor response	Any PRRT N (%)	1 cycle N (%)	>1 cycle N (%)
All NET	56 (100)	24 (100)	32 (100)
Complete response	9 (16.1)	3 (12.5)	6 (18.8)
Partial response	10 (17.9)	3 (12.5)	7 (21.9)
Stable disease	18 (32.1)	1(4.2)	17 (53.1)
Progressive disease	19 (33.9)	17 (70.8)	2 (6.2)
Objective response	19 (33.9)	6 (25)	13 (40.6)
Disease control	37 (66.1)	7 (29.2)	30 (93.8)

Conclusion

- Somatostatin signaling pathway plays a crucial role in the pathophysiology of NETs and allows a personalized theranostic approach to NET management
- SSTR expression not only has a prognostic value for treatment outcomes but also for evaluating patient-specific survival prognosis¹
- SSAs are still considered the first line of therapy for most advanced or metastatic NETs, but a change of treatment algorithm might be on the horizon with few pivotal phase 3 trials ongoing²
- A greater unmet need remains in patients with higher-grade NETs with **NETTER-2** (NCTo3972488) & **COMPOSE** (NCTo4919226) trials randomizing patients with well-differentiated, **grade 2 or grade 3** (Ki-67 10–55%) GEP-NETs to PRRT
 - NETTER-2: ¹⁷⁷Lu-DOTATATE + SSA vs. high-dose SSA
 - COMPOSE: ¹⁷⁷Lu-Edotreotide vs. best SOC
- Different SSA therapy modalities will remain relevant treatment strategies, though it seems likely that novel therapeutic combinations will be utilized in the future.



COMPETE Phase III trial

A prospective, randomized, open-label trial of ¹⁷⁷Lu-Edotreotide vs. Everolimus in progressive GEP-NET patients

Key inclusion criteria*:

- Histologically confirmed unresectable or metastatic, welldifferentiated, nonfunctional GE-NET or both functional and nonfunctional P-NET
- Grade 1 or Grade 2
- SSTR-positive disease
- Radiological disease progression with measurable disease per RECIST 1.1

Primary Objective

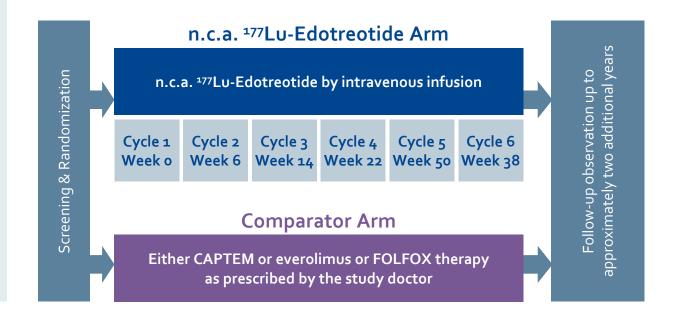
Progression-free survival (PFS)

Diagnosis of progression will be established based on morphological imaging (MRI and/or CT) according to RECIST 1.1.

Key Secondary Objectives

- Objective response rates (ORR) as best outcome
- Overall survival (OS)
- Safety

COMPOSE Phase III trial


A prospective, randomized, open-label trial of ¹⁷⁷Lu-Edotreotide vs. best SoC therapy in high-grade GEP-NET patients

Key inclusion criteria*:

- Histologically confirmed unresectable, welldifferentiated GEP-NETs
- Grade 2 or Grade 3
- SSTR-positive disease

Key exclusion criteria ±:

Prior PRRT

Primary endpoint

Progression-free survival (PFS) assessed every 12 weeks until disease progression (per RECIST 1.1) or death, whichever occurs earlier

Key secondary endpoint

Overall survival (OS) assessed up to 2 years after disease progression

Comparison between PROMID and CLARINET

Characteristics ¹	PROMID ²	CLARINET ³	
Number of patients	85	204	
Localization	Midgut	Midgut, foregut, pancreas, primary unknown	
Grade	1 (Ki-67 ≤ 2%)	1 or 2 (Ki-67 < 10%)	
Functionality	Functioning (38.8% carcinoid syndrome) Non-functioning	Non-functioning (Except gastrinomas well-controlled with PPI)	
Liver burden	≤25%: 67.1% <10%: 67.2%	≤25%: 66% <10%: 51.9%	
SSTR expression	Positive/negative	Positive (Krenning score 2-4)	
Treatment	Octreotide LAR 30 mg/28 days versus placebo	Lanreotide 120 mg/28 days versus placebo	
Primary objective	Time to progression (months)	Progression free-survival (months)	
Results	Stable disease: 66.7% vs. 37.2% Time to progression: 14.3 mo vs. 6 mo	Progression-free survival 32.8 mo vs. 18 mo	